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Coherency calculations in the presence of structural dip

Kurt J. Marfurt∗, V. Sudhaker‡, Adam Gersztenkorn∗,
Kelly D. Crawford∗∗, and Susan E. Nissen∗

ABSTRACT

We have used crosscorrelation, semblance, and eigen-
structure algorithms to estimate coherency. The first two
algorithms calculate coherency over a multiplicity of trial
time lags or dips, with the dip having the highest co-
herency corresponding to the local dip of the reflector.
Partially because of its greater computational cost, our
original eigenstructure algorithm calculated coherency
along an implicitly flat horizon. Although generalizing
the eigenstructure algorithm to search over a range of
test dips allowed us to image coherency in the pres-
ence of steeply dipping structures, we were somewhat
surprised that this generalization concomitantly degen-
erated the quality of the fault images in flatter dip
areas.

Because it is a local estimation of reflector dip (includ-
ing as few as five traces), the multidip coherency estimate
provides an algorithmically correct, but interpretation-
ally undesirable, estimate of the best apparent dip that
explained the offset reflectors across a fault. We ame-
liorate this problem using two methods, both of which
require the smoothing of a locally inaccurate estimate
of regional dip. We then calculate our eigenstructure es-
timate of coherency only along the dip of the reflector,
thereby providing maximum lateral resolution of reflec-
tor discontinuities. We are thus both better able to ex-
plain the superior results obtained by our earliest eigen-
structure analysis along interpreted horizon slices, yet
able to extend this resolution to steeply dipping reflec-
tors on uninterpreted cubes of seismic data.

INTRODUCTION
The original, crosscorrelation based (or c1) coherency al-

gorithm developed by Bahorich and Farmer (1995) provided
interpreters with a new way of visualizing faults and strati-
graphic features in 3-D seismic data volumes. By providing the
structural framework before actual interpretation began, the
“coherency cube” has greatly reduced the cycle time needed
to perform a conventional 3-D interpretation. Through more
careful examination, the coherency cube was found to illumi-
nate subtle, often difficult-to-interpret sedimentological and
diagenetic features, including dewatering, mass wasting, and
karsting events in 3-D seismic data (Haskell et al., 1995).

Although computationally efficient, the original 3-trace c1

algorithm was somewhat limited in dealing with noisy data.
More robust estimates of coherency across 2-D arrays have
long been established in seismic velocity analysis (Taner and
Koehler, 1969; Key and Smithson, 1990). We therefore quickly
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generalized the concept of 2-trace crosscorrelations in the in-
line and cross-line direction to one of a fully 3-D multitrace
cross correlations over a J-trace analysis window (Figure 1)
through the mathematical construct of a J by J covariance
matrix,

˜
C. The (i, j )th component of the covariance matrix,

Ci j , is simply the crosscorrelation of the i th trace with the j th
trace in the analysis window. We thus came up with two ad-
ditional estimates of coherency: our second (or c2) algorithm
(Marfurt et al., 1998) was generated by calculating the sem-
blance along various test dip/azimuth pairs from the covariance
matrix, whereas our third (or c3) algorithm (Gersztenkorn and
Marfurt, 1996a, b), was generated by calculating the eigenval-
ues of the covariance matrix. These three algorithms and their
relationship to the covariance matrix

˜
C are described in the

Appendix.
The eigenstructure (c3) algorithm is theoretically superior to

the c2 and c1 algorithms because it is what mathematicians call
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a subspace calculation, such that when the signal exceeds the
level of additive Gaussian noise, noise is eliminated from the
coherency calculation. For this reason, we were very pleased
and satisfied when we made our first comparisons of our c3 al-
gorithm against our c2 algorithm (Gersztenkorn and Marfurt,
1996a, b). In particular, the c3 algorithm produces fault traces
and channel edges that appear to be both thinner (providing
higher lateral resolution) and darker (having greater discrim-
ination between incoherent and coherent events) than that
produced by our c2 algorithm (see Figure 2). We were there-
fore somewhat disappointed when we saw that our new c3 co-
herency estimate failed to produce useful results in areas of
strong dip, such as that appearing around the flanks of the salt
dome shown in Figures 3a and 4, while our supposedly inferior
c2 algorithm provided quite useful results.

While working on the geologic calibration of the c2, or
semblance-based coherency algorithm, we noticed that co-
herency can vary significantly along a fault trace, and fault seg-
ments which have relatively high coherence often correspond
to areas of locally high dip on dip/azimuth images (e.g., Nissen
et al., 1995). Like coherency, dip/azimuth images are power-
ful tools in mapping faults and other discontinuities (Dalley
et al., 1989; Mondt, 1990). We illustrate this phenomenon with
the arrows shown on our c2 coherency image in Figure 4a
and on our dip/azimuth image shown in Figure 5. We exam-
ine a seismic line AA′ that intersects “coherent” sections of
an otherwise sharp, low-coherency fault (Figure 3b). Within
a local window ±40 ms about the 1200-ms time slice, this re-
flector does indeed appear to be more folded than faulted,
even though a more global visual evaluation indicates that this
fault continues both above and below the 1200-ms level. In
essence, the c2 algorithm calculation provides us with a cor-
rect, though perhaps undesirable, answer. In contrast, we note
that the same low-coherency fault trace generated by the c3

FIG.1. An elliptical analysis window centered about an analysis
point and defined by length of major axis, a, length of minor
axis, b, and azimuth of major axis, φa.

algorithm in Figure 4b is significantly more continuous, showing
consistently lower coherency even over this apparently folded
area than the same feature generated by our c2 algorithm in
Figure 4a.

Given our inability to map coherency in areas of high struc-
tural dip using our high resolution c3 algorithm, where the
lower resolution c2 algorithm produces useful results, we began
our investigation of the effect of dip on all of our coherency
algorithms. We will show that an algorithm that calculates co-
herency along a smoothed estimate of regional dip provides
superior results.

EFFECT OF DIP ON COHERENCY

To illustrate the resolution of our coherency algorithms and
their sensitivity to dip, we generated the three simple 2-D syn-
thetic seismograms shown in Figure 6. Our first, noise-free syn-
thetic seismogram (Figure 6a) consists of a flat reflector broken
by a fault, thereby producing a 10-ms vertical throw between
traces 24 and 25. Our trace spacing is 12.5 m, and our seismic
wavelet has a spectrum defined by four corner frequencies of
5, 10, 30, and 70 Hz. In 2-D, our c1, or cross-correlation, algo-
rithm reduces to a 2-trace algorithm. Not surprisingly, the fault
is invisible to the c1 algorithm (Figure 7a) since the 10-ms lag
crosscorrelation coefficient (see the Appendix) is identically
1.0. What is surprising is the great deal of success we have had
using the c1 algorithm in mapping faults of this size all along.
If we had started our work by testing our ideas on such unre-
alistic synthetic data instead of real data, we would never have
stumbled on coherency in the first place! Serendipitously, it is
rare that the seismic reflectivity is identical on either side of
a fault. In addition to the effects of reflections from the fault

FIG. 2. Seismic coherency estimated using the (a) c2 algorithm
and (b) c3 algorithm along a smoothed, interpreted seismic
horizon containing distributary channels, using a 9-trace, 8-ms
analysis window. Note that the channel boundaries appear
sharper, indicating higher lateral resolution, and are more con-
tinuous in (b), as shown by the arrows.
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plane reflector, factors of syntectonic deposition, differential
compaction, differential diagenesis, and pressure compartmen-
talization all work to modify the reflectivity once the faulting
has taken place.

In contrast, we note that both the 2-D, 3-trace c2 semblance-
based, and c3 eigenvalue-based coherency algorithms are sensi-
tive to this subtle fault, with the c3 estimate being significantly
more sensitive to the fault than the c2 estimate even though
there is no noise present. This observation of higher discrimi-
nation corroborates our visual evaluation of Figure 2. The lat-
eral resolution of the fault in Figure 7a for both the c2 and c3

algorithms appears to be two traces wide.
To evaluate our coherency algorithms in the presence of dip,

we construct the synthetic seismogram shown in Figure 6b,
which consists of a 2-D dipping reflector having an apparent
dip of p= 0.25 ms/m, corresponding to the steep dips seen in
Figure 3, and broken by a fault with the same vertical offset of
10 ms as Figure 6a. Once again, our c1 crosscorrelation algo-
rithm is insensitive to the vertical displacement across the fault
and, instead, produces a coherency value of c1= 1.0 across the
entire profile. Our c2 algorithm also produces a consistently
high value of coherency, c2= 1.0, across the section, but dips
to a value of c2= 0.8 about the fault. In contrast, although the
c3 algorithm also sees the fault, its background level where
there is no faulting hovers about c3= 0.7. This low estimate of

FIG.3. Seismic data about a salt dome from offshore Louisiana.
(a) Time slice at 1200 ms, and (b) vertical seismic section corre-
sponding to line AA′. Arrows in (a) indicate a fault that appears
to be a fold in (b). Data courtesy of Geco-Prakla.

c3 coherency in areas of steep dip correlates to the black zone
seen about the steeply dipping salt flanks in Figure 4b.

In an effort to compensate for reflector dip, we generalized
our c3 algorithm to have the same dip sensitivity as our c2 algo-
rithm. In essence, we explicitly flatten the data over a predeter-
mined number of dips and calculate the c3 coherency for each
dip. Given an interpreter-supplied estimate of the maximum
true dip, the actual number of apparent dip pairs, (p,q), can be
calculated using the Nyquist sampling criterion (e.g., Marfurt
et al., 1998). We call this modified or multidip estimate of our c3

eigenvalue coherency algorithm our c3.5 algorithm and define
it as

ĉ3.5 = max
p,q

c3(p,q). (1)

If we have Npq pairs of apparent dip, it is clear that this
new c3.5 algorithm will be Npq times more computationally

FIG. 4. Horizontal slices at 1200 ms through coherency cubes
generated by (a) the multiple dip search c2 algorithm and (b)
the flat dip search c3 algorithm. The lateral resolution of the c3
coherency algorithm is superior except near the steep dip flanks
of the salt dome. Near the salt, the c2 coherency image shows
the “radial” fault demarcating coherent reflectors to the north
from the incoherent salt to the south. The arrows correspond
to the fault indicated by arrows in Figure 3.
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expensive than our c3 algorithm. Unfortunately, whereas this
c3.5 estimate of coherency correctly compensates for dip in ar-
eas where there is no faulting (as shown in Figure 7b), it pro-
vides no greater fault resolution than the significantly more
economic semblance algorithm. Worse yet, the high fault dis-
crimination in c3 coherency seen for the flat dip reflector in
Figure 7a has reverted to that of the lower discrimination c2

coherency for this new, more expensive c3.5 algorithm. Exam-
ination of the apparent dip pair associated with equation (1)
shows that the maximum coherency occurs for an apparent dip
that is not indicative of the reflector geometry, but rather of
the local fault-induced reflector offset. Clearly, if we can better
estimate a less local, or smoother, estimate of apparent dip, we
will be able to more accurately estimate abrupt local changes
in reflector offset using the coherency attribute.

We therefore discard our inefficient, low-resolution c3.5 al-
gorithm and develop a new c3.6 algorithm that calculates an
eigenvalue estimate of coherency along a smoothed, more re-
gional dip. To achieve this end, we first estimate (p,q) at each
point of our seismic cube using the computationally efficient
c2 or semblance-based algorithm. We next smooth this esti-
mate of (p,q) by either calculating its mean, median, or alpha-
trimmed mean over a window approximately 10 times larger

FIG. 5. Dip/azimuth calculated using our c2 or semblance algorithm. Color legend corresponds to the discrete
dip/azimuth pairs searched, with zero dip, d= 0.0 ms/m, being indicated by gray at the center of the legend, and
pure colors corresponding to a dip d= 0.25 ms/m along the perimeter of the legend. Pastel colors correspond
to high-coherency reflectors, 0.83< c≤ 1.00. Black corresponds to low-coherency reflectors, c≤ 0.50. Note that
the radial fault delineated by arrows appears intermittently as yellow, indicating a coherent event having locally
steep dip to the south, such as seen in Figure 3b.

than our original coherency analysis window to obtain ( p̄, q̄).
The seismic data in the analysis window are next flattened us-
ing this smoothed dip, ( p̄, q̄), after which we calculate the c3.6

coherency:

ĉ3.6 ≡ c3( p̄, q̄). (2)

An alternative, somewhat more expensive, method would be
to perform our dip/azimuth analysis using a large window. The
data are then flattened and the c3.6 coherency calculated in a
small analysis window.

We note that this new, hybrid semblance-eigenvalue, c3.6

algorithm estimate of coherency in Figure 7b correctly esti-
mates a value of c3.6= 1.0 in areas of continuous reflector dip,
yet shows a greater relative deflection at the fault than ei-
ther our c2 or c3 algorithms. In Figures 6c and 7c, we evaluate
these algorithms for a signal to noise ratio of 1:1. Although
the c1 algorithm is insensitive to the vertical offset across a
fault of an otherwise coherent reflector, it is quite sensitive to
changes in incoherent noise, such that the results are totally
erratic. In contrast to Figures 7a and 7b, the c2 and c3.5 esti-
mates of coherency now differ because of the exclusion of the
“noise” components of the data in the eigenvalue calculation as
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described in Gersztenkorn and Marfurt (1996a, b), although
the algorithm gets confused as to what is signal and what is
noise in a 3-trace algorithm with such high noise. The 2-D,
3-trace c3.6 algorithm indicates the presence of the fault better
than the other algorithms, although there are several other lo-
cal, noise-induced false drops in coherency. These coherency
artifacts will be randomly distributed with respect to a con-
tinuous fault trace or channel edge on a time slice through a
3-D coherency cube, and are therefore not overly troublesome.
Nevertheless, we also expect to obtain more robust, though
lower resolution, results by incorporating five traces into our
2-D c3.5 coherency calculation.

In Figure 7d, we compare coherency estimated by our 3-trace
c1 algorithm to our 5-trace c2, c3, c3.5 and our newest c3.6 algo-
rithms for the noise contaminated data shown in Figure 6c. The
3-trace c1 estimate of coherency is simply repeated for refer-
ence from Figure 7c. The c2 coherency estimate of the fault is
improved by including the additional two traces. The c3 algo-
rithm estimate degrades, because it can consider only the flat
component of the dipping reflector as signal, with everything
else being considered as different parts of the noise spectrum.
The new c3.6 algorithm behaves very nicely, unambiguously de-
lineating the fault, though of course with less lateral resolution
than with the 3-trace algorithm shown in Figure 7c.

FIG. 6. Synthetic seismograms used in calibrating sensitivity of
various coherency algorithms to reflector dip and to the pres-
ence of noise. Trace spacing, 1x= 12.5 m. Wavelet generated
with corner frequencies of 5, 10, 30, and 70 Hz. Fault offset is
10 ms. (a) Noise-free synthetic seismogram with flat dip, p=
0.0 ms/m. (b) Noise-free synthetic seismogram with dip
p= 0.25 ms/m. (c) Synthetic seismogram with signal to noise
ratio= 1:1 and dip p= 0.25 ms/m.

APPLICATION AND DISCUSSION

We now return to our salt dome example shown in Figures 3
and 4. Since the azimuth has a discrete jump between values of
−180 and +180 degrees, there is no simple way to smooth the

FIG. 7. Coherency calculated using different coherency algo-
rithms. (a), (b), and (c) correspond to Figures 6a–c using 2-D,
2-trace c1 algorithm, and 3-trace c2, c3, c3.5, and c3.6 algorithms.
Note that the c1 algorithm is insensitive to the noise-free faults.
Dip smoothing included ±10 traces for the c3.6 algorithm. (d)
Coherency calculated using 5-trace 2-D c2, c3, c3.5, and c3.6 algo-
rithms for the data shown in Figure 6c. Vertical analysis window
is ±50 ms for all algorithms.
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dip/azimuth (d, φ) data cube shown in Figure 5. We therefore
convert it to the two apparent dip components, (p,q), using:

p = d cosφ, and q = d sin φ, (3)

where the azimuth, φ, is measured clockwise from the north.
The results are displayed in Figure 8. We are now free to smooth
these apparent dips over a 500× 500 m (21× 11 trace) win-
dow, resulting in the blurred images shown in Figure 9. We cal-
culate our eigenvalue-based coherency along these smoothed
apparent dips, ( p̄, q̄), thereby generating our c3.6 estimate of
coherency shown in Figure 10. We note that the resolution in
the area of flat dip is equivalent to that of Figure 4b. However,
we are now able to carry these higher resolution results into
the areas of strong structural dip about the flanks of the salt
dome. The fault trace indicated by arrows is both more contin-
uous and can be carried further than the fault trace on either
Figure 4a or 4b.

Reexamining Figure 2 with this improved understanding of
how our coherency algorithms respond to structural dip, we

FIG. 8. Apparent (a) in-line dip, p, and (b) cross-line dip, q,
generated from the discrete dip search c2 semblance-based co-
herency algorithm. Trace spacings are 1x = 25 m, and 1y =
50 m. White indicates positive (downward) dip in the (a) x
(north) and (b) y (east) directions.

recall that this coherency image was generated along a struc-
turally deformed, interpreter picked horizon. After significant
smoothing of the picks, the seismic data were subsequently
palinspastically restored, or flattened, before calculating the
coherency. The c2 estimate of coherency in Figure 2a was gen-
erated using a 61-angle search for maximum coherency. The
c3 estimate of coherency in Figure 2b was calculated using a
single-angle search for coherency, that is, the covariance ma-
trix was formed after flattening the seismic traces along the
interpreted horizon, without the application of any additional
time shifts. Although the c2 algorithm theoretically has lower
resolution than the eigenvalue method for noisy data, it also
suffers in that it searches for maximum coherency along addi-
tional candidate dips centered about the now flattened horizon.
This generates an image that looks somewhat more coherent,
much like the fault indicated by arrows in Figure 3a. We now
realize that our c3 algorithm applied to this flattened horizon is
equivalent to what we would ideally obtain by our new c3.6 algo-
rithm if the coherency were first calculated and then extracted
from the structurally deformed horizon. Instead of estimating

FIG. 9. Smoothed version of (a) p and (b) q shown in Figure 8
obtained by independently averaging each apparent dip over
a ±250-m window.
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FIG.10. Horizontal slice at 1200 ms through the coherency cube
generated using the eigenstructure algorithm operating along
the smoothed dips shown in Figure 9. Note that the lateral
resolution is equivalent to that of Figure 4b in areas of shallow
dip, yet provides quality images of improved resolution over
Figure 4a in areas of steep dip. The arrows correspond to the
fault indicated by arrows in Figure 3.

non-local reflector dip by use of our semblance algorithm and
subsequent smoothing, we have estimated this dip via the pro-
cess of an interpreter picking the horizon. In principle, such
interpreter-guided picking is the optimal means of estimating
reflector dip, thereby substantiating the results seen in Figure 2.

CONCLUSIONS

We have shown both how our various coherency algorithms
are sensitive to structural dip and how, through a hybrid tech-
nique, we have developed an algorithm that produces superior
coherency estimates in areas of both low and high dip. We are
not surprised but somewhat sobered that if there is no change of
the seismic wavelet across a fault, our original crosscorrelation
algorithm would not have seen it. Fortunately, changes in reflec-
tivity caused by differential diagenesis, pressure compartmen-
talization, and syntectonic deposition that are often associated
with faulting, as well as the interference of fault plane reflec-
tions and mismigration due to seismic velocity changes, all give
rise to measurable coherency variations across a fault that are
detectable by our original algorithm. Our second-generation
multitrace semblance-based coherency algorithm is sensitive
to the vertical displacement of otherwise identical reflectors
across a fault. However, what we numerically estimate is not
the coherence across the fault, but rather the coherence of a
postulated reflector segment that best fits the (vertically off-
set) data within the numerical analysis window. By definition,
this coherency estimate will always be greater than or equal
to an estimate of coherency projected along a dip parallel to
the reflector across the fault. This leads to a local wash out of
what we would otherwise like to interpret as low-coherency
discontinuities, producing images that have both reduced
lateral resolution and reduced contrast. Our third-generation
multitrace eigenstructure analysis–based coherency algorithm

provides optimum lateral resolution in the presence of noise.
For reasons of computational efficiency, this original algorithm
did not explicitly search over a suite of trial dips for maximum
coherency. Generalizing this algorithm to do this explicit search
allowed us to map coherency in the presence of steep dip, but
unfortunately, at least in areas of flat dip having a high signal-
to-noise ratio, reduced our lateral resolution and contrast to
that of our semblance algorithm.

We address the problem of local apparent dip by constructing
a hybrid algorithm. We begin by estimating the apparent dips
everywhere in the cube using our most efficient, though lower
resolution, semblance algorithm. These dips are then smoothed
over a large window using either median, alpha-trimmed mean,
or mean filters to provide a robust estimate of reflector versus
local seismic dip. We then calculate our eigenstructure estimate
of coherency only along the dip of the reflector, thereby pro-
viding maximum lateral resolution of reflector discontinuities.

We are also now able to understand some of our exciting
early coherency results calculated along picked horizons hav-
ing considerable structural deformation. In this situation, we
simply flatten the seismic data along this horizon and calculate
our eigenstructure estimate of coherency using our original,
flat dip algorithm. In essence, this method is identical to our
hybrid method, except that in the flattening case, our estimate
of reflector dip has been implicitly estimated by the interpreter
who picks the seismic reflector horizon.
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APPENDIX

RELATIONSHIP OF COHERENCY TO THE COVARIANCE MATRIX

Given J seismic traces containing data, u j , having coordi-
nates (xj , yj ) within our analysis window shown in Figure 1,
we calculate the 2M + 1 sample covariance matrix,

˜
C, along

a pair of apparent dips, (p,q), centered about time, t =n1t ,
to be:

˜
C(p,q) =

n+M∑
m=n−M


ū1mū1m ū1mū2m . . . ū1mūJm

ū2mū1m ū2mū2m . . . ū2mūJm

...
...

...

ūJmū1m ūJmū2m ūJmūJm

 ,
(A-1)

where ū jm=u j (m1t − pxj −qyj ) indicates the seismic traces
interpolated along the apparent dip at time, t =m1t −
pxj −qyj .

The c1 algorithm

For the 2-D, 2-trace c1 algorithm, the coherency along
(p,q = 0) is

c1(p,q = 0) = C12

(C11C22)1/2
. (A-2)

For the 3-D, 3-trace c1 algorithm, the coherency along (p,q)
is

c1(p,q) =
[

C12

(C11C22)1/2

C13

(C11C33)1/2

]1/2

. (A-3)

Our coherency estimate, ĉ1, is then the maximum coherency
found along the dips searched:

ĉ1 = max
p,q

c1(p,q). (A-4)

The c2 algorithm

We calculate our c2 estimate of coherency along an apparent
dip, (p,q), by

c2(p,q) = aT

˜
Ca

J Tr(
˜
C)
, (A-5)

where a is a J element vector given by:

a =


1

1
...

1

 , (A-6)

and Tr(
˜
C) denotes the numerical trace of the covariance matrix

Tr(
˜
C) =

J∑
j=1

Cj j . (A-7)

Again, our estimate of coherency, ĉ2, is the maximum co-
herency found along the dips searched:

ĉ2 = max
p,q

c2(p,q). (A-8)

The c3 algorithm

We calculate our c3 estimate of coherency along a dip, (p,q),
by

c3(p,q) = λ1

J∑
j=1

λ j

, (A-9)

where λ j is the j th eigenvalue of the covariance matrix,
˜
C. Our

original c3 (eigenstructure coherence) algorithm as described
by Gersztenkorn and Marfurt (1996a, b), produced a coherency
estimate

ĉ3 = c3(p = 0,q = 0). (A-10)

This algorithm is readily generalized to one that searches
over multiple dips, which we denote as a ĉ3.5 estimate of co-
herency in Figure 7:

ĉ3.5 = max
p,q

c3(p,q). (A-11)


